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THE COMPUTATION OF IT

PREFACE

Although the familiar symbol (7r) for pi did not come into general use until a
little over two hundred years ago, computing the numerical value of IT has engaged
the attention of mathematicians from the time of the ancient Egyptions down to
the electronic computers of today. Thus the Ahmes Papyrus (Egypt) of about
1800 B.C. gives the area of a circle as

d
d )4 ,

where d, is the diameter. This is equivalent to taking 7r as

or approximately 3.1604 ... At about the same time, the Babylonians, the Hindus
and the Chinese took ir as equal to 3.

The early Greeks were concerned with the problem of squaring the circle, and
in the course of his searching. Archimedes, about 250 B.C.. assumed the value of
ir to lie between

01 13-- 3.1408 ...) and 3-
7

(= 3.1428 . . .).
71

The Chinese soon decided (about 100 A.D.) that ir was approximately equal to

or 3.162 . . . About 150 A.D., the renowned Greek astronomer, Ptolemy of Alexandria,
using the sexagesimal system of notation, stated that 17' = 313'30w, or, as we would
write it today.

8 30 2_17
60 (60)2= "120'

which gives the approximation 3.1416, or 3.141666 ... The Hindu mathematician
Aryabhata. about 500 A.D., gave two values of tr,

177 62 8323-- and
1250 2).000'

both of which give the value 3.1416. exactly. The latter fraction is presumably
calculated from the perimeter of an inscribed polygon of 384 sides.

For the n...s thousand years or more mathematicians in many lands struggled
with the problem, but with 1itde progress. Finally. about 1580, Francois Vieta, a
pioneer French algebraist, using a polygon of 393,216 sides, found ir correct to
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nine decimal places, placing it between 3.1415926535 and 3.1415926537. Itappears
that he was the first mathematician to use an infinite product in this connection,
asserting that

2 ir
Ar 2

By way of contrast, contemporary mathematicians have computed the value of
1r to more than 100,000 decimal places. This is a fantastic achievement from any
point of view. The story of this long evolution lasting nearly 4000 years is indeed
fascinating; the climax is vividly set forth in the present collection of essays.

William L. Schaaf
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FOREWORD

The numerical value of ir can be approximated by either of two general methods
with as close an approximation to its "true" value as we wish. One method is
geometrical. This is the classical approach first used by the Greek geometers and
by mathematicians generally until comparatively modern times, that is until about
1650. It involves computing the perimeters of polygons inscribed in and circum-
scribed about a circle, and assuming that the circumference is intermediate
between these perimeters. As the number of sides of the polygons is increased,
the approximation becomes more accurate. In fact, if the areas of the polygons
are used instead of the perimeters, an even better approximation can be obtained.

The second method, the modern approach, depends upon an expansion of1r into
some equivalent analytical expression such as a converging infinite series or a
convergent infinite product. One uf the first mathematicians to use such an expres-
sion was Vieta, ai we have already seen. Another wis John Wallis, who showed,
in 1656, that rr could be expanded into the infinite product:

rr 2 2 4 4 6 6 8
2 1 3 3 5 5 7 7

Many other mathematicians have developed various expansions for evaluating
IT, among them James Gregory. G. W. von Leibniz, John Machin, Leonard Euler,
and C. F. Gauss.

Perhaps a few words of explanation about infinite series will help you to under-
stand the following articles better.

A succession of numbers' which follows a definite law or pattern is called a

finite seqvence; for example.

or

(a) 2, 4, 8, ... 2,
1 1 1

(b) 1, 4

where n is a positive integer.
A sequence that is endless, having a first term but no last term, is called an

infinite sequence.
If we consider the sum of the first n terms of a finite sequence, we refer to the

indicated sum as a finite series; thus
a - s
E (n2) a. 1 + 4 + 9 + 16 + 25 + 36= 91..

We designate the indicated sum id the terms of an infinite sequence as an
infinite series. Hut this is not a sum in the usual sense of the word, because the
terms of an infinite series can never all be added term by term.



If the succession of partial sums of an infinite series increases indefinitely as
n increase:, indefinitely. the series is said to he divergent. and tlw -sum" of the
series is meaningless.

If. on the other hand. the succession of partial sums of an infinite series ap-
proaches a limiting value as n increases indefinitely. the series is said hi be run-
vergent, and the "sum" id* tlw series refers to this limiting value. For example.
in the infinite series

the limiting value is 2. The sum of any finite number of terms of this series. how-
ever great. is always less titan 2: but by taking more and more terms. the partial
sum can he made as close to 2 as we wish. The limiting value -2" is called the sum
of the convergent infinite series in question.

9



Me Latest About v

by Howard Eves

On July 29, 1961, Dr. Daniel Shanks and Dr. John W. Wrench, Jr. computed
7r to 100,265 decimal places on an IBM 7090 system in the IBM Data-center in
New York. The computation took 8 houra 43 minutes, including 42 minutes to con-
vert the final result from binary to decimal form. A check run, using a second
formula, confirmed the .;.ccuracy of the first run to 70,695 decimals, and subsequent
runs on 7090 computers in the Washington area showed that a machine error oc-
curred in the initial run. Dr. Shanks and Dr. Wrench now have results that agree
perfectly (including the conversion and printing) to 333,075 bits or 100,265 decimal
places.

The first computation employed the formula

1 7' 24 tan-1(i) + 8 tan-1(A) + 4 tan-1(A),

which was published by Carl Steirmer in 1896. This formula is especially well
adapted to binary computers. inasmuch as the evaluation of powers of -} on such
computers can be accomplished simply by shifting.

The clwck computation was based on the formula

48 tan-1(4) + 32 tan-1(k) 20 tan-1(A),

of Gauss, which was used by George Fdton to compute w to 10,021 decimal places
on a Pegasus in 1958. Because of the overlapping terms in the two formulas used.
the check consisted almost entirely of the computation of 48 tan-lad. This re-

quired 4 hours 22 minutes on the IBM 7090 system.
Following the discovery of a machine error in the evaluation of 24 tan-1( 1)be-

yond the 70.695 decimal place. all the aretangents were individually recomputed
on a second 7090 system, and complete agreement was reached in all phases of
the calculation to 100,265 places.

On September 11, 1961, the 7090 system prepared a count of the frequency dis-
tribution of the decimal digits of tr in suceessive chiliads. Comparison with this
latest count, carried to 100,000 places, revealed a few errors in Dr. Wrench's
enumeration of the distribution of the digits 7, 8, 9 as published in Table 1 of his
paper, "The evolution of extended decimal approximations to ir." in THE MATHE-

MATICS TEACHER. LIII (Dec.. 1960). 648. This earlier count had been based on a

computation of ir to 16,167 decimal plrres obtained on July 20. 1959, using a pro-
gram of Francois Genuys, on an IBM 704 system at the Com missariat a l'Energie
Atomique in Paris. In Table 1 of Dr. Wrench's article in THE MATHEMATICS

TEACHER, the last four entries in the 7-column should read 1258, 1342, 1439, and
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1546, respectively. In the 8-column read 1243, 1336, 1455, and 1543, and in the
9-column read 1306, 1418, 1513, 1615. With these corrections, Table 1 is entirely
free from errors.

Furthermore, on August 22, 1961, Dr. Shanks and Dr. Wrench also computed
e to 100,265 decimal places on an IBM 7090 system in 2 hours 25 minutes, exclu-
sive of the conversion to decimal form, which again required 42 minutes. The
well-known factorial series was used, and a total of 25,266 reciprocal factorials
were evaluated to the stated accuracy. This confirms the 60,000 decimal place
computation of e on the II liac by D. J. Wheeler in December, 1952. Wheeler's
calculation required 40 hours on the Illinois computer. The accuracy of the 100,265
decimal places constituting this latest approximation to e has been confirmed by
a second calculation, which gave the respective sums of the even- and odd-
numbered terms of the factorial series, yielding approximations to both e and 1/c
to this accuracy.

Dr. Shanks and Dr. Wrench have prepared a joint paper on their calculations of
tr, which appears in the January, 1962, issue of Mathematics of Computation.
Appended to their paper is the value of rr truncated to 100,000 decimal places.

4
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Forewort.'
As it turns out, some infinite series converge more rapidly than others.
Consider, for example, the series

X3 rsarc tan x = + - --
3 5 7

If we set x = 1, we get Gregory's series,

IT I 1 1. 1 - + - +4 3 5 7 '
4

but this series converges too slowly for purposes of computation.
On the other hand, Machin's formula,

IT 1-4 = 4 arc tan - - arc tan
5 239

(1)

(2)

(3)

used in conjunction with the expansion (1) above, converges much more rapidly. In
fact, you can get a rather good approximation to ir simply by taking the first four
terms of (1) when x ie. 1/5 (or .2). together with first term of (1) when x -= 1/239.
Try it and see for yourself!

The reader who is familiar with trigonometry, may be interested in the deriva.
Lion of Machin's formula. To prove that

7T 1
4 arc tan (-1) - arc tan(

4 5 239)

let arc tan 1/5 = a, so that tan a = 1/5. (1)

2
2 tan a 5 5Then tan 2a = = .-- (2)1 - tan2 a =

1 12

10
12and tan 40 = 120

25 119
1

144

(3)

Since tan 4a is very nearly equal to 1, we see that 4a is approximately equal to ir/4.
Now let 4a = ir/4 + arc tan x. (4)

Recall that tan + -77) = tan A + 1 1 + tan A
(5)4 1 - tan A 1 - tan A

120 Tr) 1 + x 1nence 119 = tan 4a == tan (arc tan x + ana =
239 .

Therefore, from (4), we have -4 = 4a arc tan x,

or 4 arc tan (-) arc tan (h3-.
5 239

5

(6)



A Series Useful in the Computation of w
In J. S. Frame

One of the standards ways of computing 7r is based on Machin's formula:

(1)

and the reties expansion

1 1= 4 tan-' tarr'
4 5 239

(2) tan-I
3 5

W. Shanks used precisely this in computing ir to 707 decimal places. In applying
this series to the case x = 1/5, the individual terms are easily computed as deci-
mals, and the series converges rapidly enough so that 35 terms suffice for 50-place
accuracy. When we set z = 1/239, however, the individual terms, involving powers
of 1/239, are not easily expressed as decimals, so that computation beyond 15
decimals is laborious despite the rapid convergence. If, however, we expand the
terms in powers of 1/240, we obtain a new series which converges rapidly, and
whose terms are easier to compute as decimals. The result is expressed by the
formula:

tan-' = t I. nir\ (tV-27
1 t 4

t 2t2 2t3 415 so 8t7+ + +
1 2 3 5 6 7

The terms are alternately positive and negative in groups of three, so the error
in breaking off the series is less in absolute value than the first group omitted.
The series converges for 1:1 < 1/Vi. Setting t =-- 1/240, we obtain the series

tan-' 1 1 Y2 1 \a
239 240 2 k240/ 3 \MO/

4 1 \I _11( 1 \" )7
M240) 6 \I 7 k240

.

The computation is conveniently arranged as follows: Divide 1 by 240, this by 120,
this in turn by 240, and so on alternately. This takes care of the numerators auto-
matically. It remains only to divide each term by the corresponding exponent, and
add and subtract appropriate terms. Sixteen terms give 50-place accuracy.

The proof of formula (3) is a special case of the following: Let

at + b
ci

=
+ d z = rem

tb + d

7



ra:a'a .aaa'a 2 a a's. , aV ',a, a A.' a

Then

1 + (ct + d) + gat + b)
2i tan-I x log 1 ( C: d) i(at + b)

1 + ia(c + ia ): + ( d + ib ) d+ ib t d+ ib
+ td

, at + b ,b 1, 1it v,' zn .
tr- Sin n17

This series converges for ItI < 11r, but it is useful for computation only when the
values of r" sin a are convenient rational quantities. If z i, we have z t, and
obtain the series (2). The other case of interest is z = 1 + i, x tl(1 t), which
leads to formula (3), and can be applied to the computation of w as discussed above.
This same series (3) can be used to advantage in computing tan-' 1/239 by means
of the formula

(4)
1 1tan-' tan-i 2 tan--1

239 41 99



, Ve

Foreword

One of the first large electronic computers ever built, the ENIAC was designed
and constructed at the Moore ichool of Electrical Engineering, University of
Pennsylvania, Philadelphia, in 1946. The name stands for "Electronic Numerical
intetrator and Calculator". It was capable of performing 5000 additions per sec-
ond and up to SOO multiplications per second.

Advances and improvements in electronic computers have been unbelievingly
rapid in the twenty odd years since EN1AC first appeared. Today's (1965) machines
can perform 100,000 additions per second and 10,000 multiplications per second.

9



An ENIAC Determination of IT and e
to more than 2000 Decimal Places

Gigoact W. REITWILSNEM

Early in June. 1949, Professor JOHN VON NEUMANN expressed an interest in the
Possibility that the ENIAC might sometime be employed to determine the value
of v and e to many decimal places with a view toward obtaining a statistical mea-
sure of the randomness of distribution of the digits, suggesting the employment of
one of the formulas:

744 = 4 aretan 1/5 arctan 1/239
77/4 = 8 aretan 1/10 4 arctan 1/515 arctan 1/239
v/4 = 3 arctan 1/4 + aretan 1/20 + arctan 1/1985

in conjunction with the GREGORY series

arctan x = X ( 1)4(2n + 1 )'x2"" .
s-o

Further interest in the project on Ir was expressed in July by Dr. NICHOlAS METRO-
POUR who offered suggestions about programming the calculation.

Since the possiblity of official time was too remote for consideration, permission
was obtained to execute these projects during two summer holiday week ends when
the ENIAC would otherwise stand idle, and the planning and progamming of the
projects was undertaken on an extra-curricular basis by the author.

The computation of e was completed over the July 4th week end as a practice
job to gain experience and technique for the more difficult and longer project on
v. The reciprocal factorial series was employed:

e= X (n!)-1.
11=o

The first of the above-mentioned formulas was employed for the computation of
its advantage over the others will be explained later. The computation of 7r was

completed over the Labor-Day week end through the combined efforts of four mem-
ben of the ENIAC staff: CLYDE V. HAUFF (who checked the programming for 7r).
Miss MAW S. MCAWSTER (who checked the pmgramming for e), W. BARKLEY
Furrz and the author, taking turns on eight-hour shifts to keep the ENIAC oper-
ating continuously throughout the week end.

While the programming for e is valid for a little over 2500 decimal places and.
with minor alterations. ran be extended to much greater range, and while the
programming for v is valid for around 7000 decimal places. the arbitrarily selected
limit of 2000+ was a convenient stopping point for e and about all that could be
anticipated foi a week end's operation for v.

While the details of the programming for each project were completely different.

11
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the general pattern of procedure was roughly the same, and both projects will be
discussed together. In both projects the ENIAC'S divider was employed to deter-
mine a chosen number i of digits of each successive term of the series being com-
puted. the remainder after each division being stored in the ENIAC'S memory and
the digits of each term being added to (or subtracted from) the cumulative total.
After performing this operation for as many successive terms as practicable, the
remainders for these terms were printed on an I.B.M. card (the standard input-
output vehicle for the ENIAC). and the process was repeated, continuing through
some term beyond which the digits of and remainders for all further terms would
be zeros. At this point was printed the cumulative total of the dil.dts of the individual
terms, which yielded (after adjustment for carry-over) the actual digits of the series
being determined.

The cards bearing the remainders then were fed into the ENIAC reader, and
the entire process was repeated for the next i digits. the ENIAC reading each
remainder in turn and placing it before the digits of the appropriate term. Each
deck of cards bearing remainders was then employed to determine the "next"
i digits and the "next" deck of "remainder" cards continuing through the first
stopping point beyond the 2000th decimal place. The cards bearing the cumulative
totals of sets of i digits of the terms were then adjusted for carry-over into each
preceding set of I digits. In the case of e this yielded the final result: in the case
of 7r all the above described operations were performed once for each inverse tan-
gent series, so that each set of "cumulative total" cards, adjusted for c .:rry-over,
yielded the. digits of one of the series, the final result being determined by the com-
bination of these series in appropriate manner.

The number of places i chosen for each intervai of computation, the maximum
magnitude of each remainder, the amount of memory space available, and the
detaiis of divider operation (the number of places to which division can be per-
formed to yield a positive remainder, and the necessary conditions of relative and
absolute. positioning of numerator and denominator) all were interrelated, and
where opportunity for selection existed, that selection was made which provided
maximum efficiency of computation. In the case of 71. there was imposed the addi-
tional requirement that identical programming apply for all series employed,,and
for this reason the formula:

7r/4 = 4 aretan 1/5 tertian 1/239

was superior to the other two.
In order to insure absolute digital accuracy, the programming was arranged to

that one half applied to computation and the other half to checking. Before any
deck of "remainder" cards was employed to determine the next i digits, the cards
were reversed and employed in the checking sequence to confirm each division
by a multiplication and each addition by a subtraction and vice versa, reproducing
the previous deck of "remainder" cards and insuring that the cumulative total

12



reduced to zero. (In the case of e this was a simple inversion of the computation:
in the case of Tr the factor (2n + in each term made it a more complicated
affair). After the correctness of each deck was established through this checking,
the "remainder" earth were rereversed. and the computation proceeded for the
next i

Since the determination of each i digits was not begun until the determination
of the previous i digits had been confirmed by checking. the ENIAC stood idle
during the reversals and rereversals and comparisons of tire decks in the compu-
tation of e; in the ease of 77, however, the ENIAC was never idle, for operation on
each series was alternated with operation on the other. card-handling on either
being accomplished while the other was being operated upon by the ENIAC. In
the case of e. insurance against any undiscovered accidental misalignment of
cards was provided by rerunning the entire computation without checking. i.e.,
without card reversals, confirming the original results; in the ease uf v, the same
assurance was provided by a programmed check upoli the identification numbers
of each successive card in both computation and checking.

In the case of IN there war printed (in addition to each "remainder" card) a card
containing the current i digits of (n!)-1 for n = 20K; K 1, 2, 3 ... ; in the case
of n. only remainder and final total cards were printed.

The ENIAC determinations of both ir and e confirm the 808place determina-
tion of e published in MTAC, v. 2, 1946, p. 69. and the 808place determination
of 17- published in MTAC. v. 2. 1947. p. 245, as corrected in MTAC, v, 3. 1948,
p. 18-19.

Only the following minor observation is offered at this time concerning the ran-
domness of the distribution of the digits. Publication on this subject will, however.
be forthcoming soon. A preliminary investigation has indicated that the digits of
e deviate significantly from randomness (in the sense of staying closer to their
expevtation values than a random sequence of this length normally would) while
for Tr no significant deviations have so far been detected.

The programming was checked and the first few hundred decimal places of each
constant were determined on a Sunday before each holiday week end mentioned
above, the principal effort being made on the longer week end. The actual required
machine running time for both computation and checking in the case of e was
around 11 hours, though card-handling time approximately doubled this, and the
recomputation without checking added about 6 hours more; actual required ma-
chine running time (including card-handling time) for .n was around 70 hours.

The following values of 7T and e have been rounded off to 2035D and 2010D
respectively.

= 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
82148 08651 32823 06647 09384 46095 50582 23172 53594 08128
48111 74502 84102 70193 85211 05559 64462 29489 54930 38196
44288 10975 66593 34461 28475 64823 37867 83165 27120 19091
45648 56692 34603 48610 45432 66482 13393 60726 02491 41273
72458 70066 06315 58817 48815 20920 96282 92540 91715 36436

13
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e

78925 90360 01133 05305 48820 46652 13841 46951 94151 16094
33057 27036 57595 91953 09218 61173 81932 61179 31051 18548
07446 23799 62749 56735 1885/ 52724 89122 79381 83011 94912
98336 73562 44065 66430 86021 39494 63952 24737 19070 21798
60943 70277 05392 17176 29317 67523 84674 81846 76694 05132
00056 81271 45263 56082 77857 71342 75778 96091 75637 17872
14684 40901 22495 34301 46549 58537 10507 92279 68925 89235
42019 95611 21290 21960 86403 44181 59813 02977 47713 09960
51870 72113 49999 99837 29780 49951 05973 17328 16096 31859
5024459455 34690 85026 42522 50825 35446 85035 26193 11881
71010 00313 78587 52886 58753 32083 81420 61717 76691 47303
59825 54904 28755 46873 11595 62863 88235 37875 93751 95778
18577 80532 17122 68066 13001 92787 66111 95909 21642 01989
38095 25720 10654 85863 27886 59361 53381 82796 82303 01952
03550 18529 68995 77362 25994 13891 24972 17752 83479 13151
55748 57242 45415 06959 50829 53311 68617 27855 88907 50983
81754 63746 49393 19255 06040 09277 01671 13900 98488 24012
85836 16035 63707 66010 47101 81942 95559 61989 46767 83744
94482 55379 774'2 68471 04047 53464 62080 46684 25906 94912
93313 67702 89891 52104 75216 20569 66024 05803 81501 93511
25338 24300 35587 64024 74964 73263 91419 92726 04269 92279
67823 54781 63600 93417 21641 21992 45863 15030 28618 29745
55706 74983 85054 94588 58692 69956 90927 21079 75093 02955
32116 53449 87202 75596 02364 80665 49911 98818 34797 75356
63698 07426 54252 78625 51818 41757 46728 90977 77279 38000
81647 06001 61452 49192 17321 72147 72350 14144 19735 68548
16136 11573 52552 13347 57418 49468 43852 33239 07394 14333
45477 62416 86251 89835 69485 56209 92192 22184 27255 02542
56887 67179 04946 01653 46680 49886 27232 79178 60857 84383
82796 79766 81454 10095 38837 86360 95068 00642 25125 20511
73929 84896 08412 84886 26945 60424 19652 85022 21066 11863
06744 27862 20391 94945 04712 37137 86960 95636 43719 17287
46776 46575 73962 41389 08658 32645 99581 33904 78027 59009
94657 64078 95126 94683 98352 59570 98258

2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995
95749 66967 62772 40766 30353 54759 45713 82178 52516 64274
27466 39193 20030 59921 81741 35966 29043 57290 03342 95260
59563 07381 32328 62794 54937 63233 82988 07531 95251 01901
15738 34187 93070 21540 89149 93488 41675 09244 76146 06680
82264 80016 84774 11853 74234 54424 37107 53907 77449 92069
55170 27618 38606 26133 13845 83000 75204 49358 26560 29760
67371 13200 70932 87091 27443 74704 72306 96977 20931 01416
92836 81902 55151 08657 46377 21112 52389 78442 50569 53696
77078 54499 69967 94686 44549 05987 93163 68892 30098 79312
77361 78215 42499 92295 76351 48220 82698 95193 66803 31825
281369 39849 64651 05820 93923 98294 88793 32036 25094 43117
30123 81970 68416 14039 70198 37679 32068 32823 76464 80429
53118 02328 78250 98194 55815 50175 67173 61332 06981 12509
96181 88159 30416 90351 59888 85193 45837 27386 67385 89422
87922 84998 92086 80582 57492 79610 48419 84443 63463 24496
84875 60233 62482 70419 78623 20900 21609 90235 30436 99418
49146 31409 34317 38143 64054 62531 52096 18369 08887 07016
76839 64243 78140 59271 45635 49061 30310 72085 10383 75051
01157 47704 17189 86106 87396 96552 12671 54688 95703 50354
02123 40784 98193 34321 06817 01210 05627 88023 51930 33224
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74501 58539 04730 41995 77770 93503 66041 69973 29725 08868
76966 40355 57071 62268 44716 25607 98826 51787 13419 51246
65201 03059 21236 67719 43252 78675 39855 89448 96970 96409
75459 18569 56380 23637 01621 12047 74272 28364 89613 42251
64450 78182 44235 29486 36372 14174 02388 93441 24796 35743
70263 75529 44483 37998 01612 54922 78509 25778 25620 92622
64832 62779 33386 56648 16277 25164 01910 59004 91644 99828
93150 56604 72580 27786 31864 15519 56532 44258 69829 46959
30801 91529 87211 72556 34754 63964 47910 14590 40905 86298
49679 12874 06870 50489 58586 71747 98546 67757 57320 56812
88459 20541 33405 39220 00113 78630 09455 60688 16674 00169
84205 58040 33637 95376 45203 04024 32256 61352 78369 51177
88386 38744 39662 53224 98506 54995 88623 42818 99707 73327
61717 83928 03494 65014 34558 89707 19425 86398 77275 47109
62953 74152 11151 36835 06275 26023 26484 72870 39207 64310
05958 41166 12054 52970 30236 47254 92966 69381 15137 32275
36450 98889 03136 02057 24817 65851 18063 03644 28123 14965
50704 75102 54465 01172 72115 55194 86685 08003 68532 28183
15219 60037 35625 27944 95158 28418 82947 87610 85263 98139
55990 06738

Values of the auxiliary numbers arceot 5 and arceot 239 to 2035D are in the pos.
session of the author and also have been deposited in the library of Brown Univer-
sity and the UNIT nix' of MTAC.

'See UTAC. v. 4, p. 24.
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Foreword

Significantly, the real numbers of elementary algebra fall into two disjoint sets:
(I) the rational numbers, and (2) the irrational numbers. A rational number is
a number that can be expressed as the ratio of two integers, as, for example,

1. I, I. etc. Every rational number when expressed in decimal fraction form
yields either a terminating decimal or a repeating decimal. Thus.

= .875. and A .181818 ...
It is not difficult to show that between any two rational numbers there exist in-
finitely many other rational numbers. Thus, if the rational numbers were associated
with points on a line, it would seem as if the line were "completely filled" with

points.
Although it is difficult to picture it, such a line is not completely filled with points.

Strangely enough, it is full of "holes", that is, there are many points which have

no rational numbers assigned to them. The numbers that "belong" to these points
are called irrational numbers.

An irrational a:umber is a number that is not rational, that is, it cannot be ex-

pressed as the quotient of two integers. The existence of nun-rational numbers is
easily shown. A classical proof was given by Pythagoras over 2000 years ago, as
follows. Assume that VT is rational. Let Nri = a/b, where a and b are relatively

prime. Then

12 a It

2=(-i

or 2b2 = al . (1)

Hence al is an even number; therefore a is also an even number. Hut if a is an even
number, it can be expressed as 2k. where k is any positive integer. Thus

2b2 = al = (2k)2 = 4k2 ,

or bl 242

Hence b2 is an even number, and therefore b is an even number. Since both a and
have been proved to be even numbers, the assumption that a and b are relatively

prime is false, and so the assumption that VT a/b is false. In short. VT cannot
be expressed as the ratio of two integers. The proof can be generalized to ViV,

where N is any integer which is not the square of another integer.
One of the reasons for the many attempts to find the value of IT 10 so many deci-

mal places is the desire to learn something about the distribution of the digits in
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the extended approximation ofv. It has been proved that v is an irrational number,
that is a number which when expressed as a decimal in base 10, yields a non-
terminating, nun-repeating decimal.

An irrational number is said to be a normal lumber if all the digits occur with
equal frequency, and if all blocks of digits of the same length occur with equal
frequency. From the standpoint of the theory of numbers and higher analysis.
mathematicians are curious about the distribution of the digits in the numerical
approximation of v. It is believed that v is a normal number with respect to base
10, but it is not yet known whether v is normal to any base. These and related
questions are of consideral4e interest to modern mathematicians.
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The Evolution of Extended Decimal
Approximations to Ir

by J. W. Wurivcia, Jot.,

In his histosical survey of the classic problem of **squaring the circle," Profes-
sor E. W. Hobson [1] distinguished three distinct periods, characterized by funds-
mental differences in method, immediate aims, and available mathematical tools.

The first periodthe so-called geometrical periodextended from the earliest
empirical determinations of the ratio of the circumference of a circle to its diameter
to the invention of the calculus about the middle of the seventeenth century. The
main effort was directed toward the approximation of this ratio by the calculation
of perimeters or areas of regular inscribed and circumscribed polygons.

The second period began in the middle of the seventeenth century and lasted
for more than a hundred years. During this period the methods of the calculus
were employed in the development of analytical expressions for in the form of
infinite series, products, and continued fractions.

The third period, which extended from the middle of the eighteenth century to
nearly the end of the nineteenth century, was devoted to studies of the nature of
the number sr. J. H. Lambert [2] proved the irrationality of w in 1761, and F.
Lindemann [3] first established its transcendence in 1882.

This article is concerned with the second period and its sequel, which extends
to the present day.

According to Hobson [1], the first analytical expression discovered in this
period is the infinite product

ir 2 2 4 4 6 6 8 8
2 1 3 3 5 5 7 7 9*

which was published by John Wallis [4] in 1655.
Lord Brouncker, the first president of the Royal Society, about 1658 found the

infinite continued fraction

ir 1 1° 31 5'
1+ 2+2+ 2+ '

which was shown subsequently by Euler to be equivalent to the alternating series

1 1 1
SIM I -1

known to G. W. Leibnix in 1674.

Nembere la bracket. refer to tie referesore tiered at the rod of the ankle.
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The great majority of calcalations of s to many decimal places have been based
upon the power series

xsarctanxx--3 +--..., 1 Zx5 1,
5

which was discovered in 1671 by James Gregory [5]. He failed, however, to note
explicitly the special case corresponding to x 1, which is ascribed to Leibnix.

Sir Isaac Newton [6] in 1676 discovered the power series

ie 1.3e
2 3 2.4 5

1 x 1,

which has been used by a few computers of tr.
In 1755 Leonhard Euler [7] obtained the following useful series:

arctan x \+ 2 4( \ 1

1 im x2 1 3 + x2) 3 5 kl + x2)

It was by means ofGregory's series, taking x that Abraham Sharp [8],
at the suggestion of the English astronomer Edmund Halley, computed w to 72
decimal places in 1699, thereby nearly doubling the greatest accuracy (39 decimal
places) attained by earlier computers, who had used geometrical methods. Sharp's
calculation was extended by Fautet de Lagny [9] in 1719 to 127 decimals (the 113th
place has a unit error).

Newton set x 1113 in his series, and thereby computed tr to 14 places. A Japanese
computer, Matsunaga Ryohitsu [10], used the same procedure to evaluate ir cor-
rect to 49 decimal places in 1739. About 184)(1 a Chinese, Chu Hung, calculated
w to 40 places (25 correct) by this series [10].

Most computers of w in modern times have used Gregor)es series in conjunction
with certain arctangent relations. Only nine of these relations have been empbyed
to any extent in such computations. We shall now consider these formulas, ar-
ranged according to the increasing precision of the approximations computed by
their use.

I. 4 5 arctan 7 + 2 arctan 3
79

Euler [7] in 1755 used this relation in coRjunction ir 'It his series for arctan x to
compute w correct to 20 decimal places in one hour. B mGeorg von Vega [11] in
1794 empbyed Gregory's series and the preceding re...ition to evaluate Ir tO 140
decimal places, of which the first 116 were correct. This precision was exceeded
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by that attained by an unknown calculator whose manuscript, containing an ap-
proximation correct to 152 places, was seen in the Radcliffe Library at Oxford
toward the close a the eighteenth century.

1 1
II. = 4 arctan arcian

1 + arctan

Euler published this relation in 1764. It was used by William Rutherford [12]
in 1841 to compute w to 208 places (152 correct).

1 1 1
III. arctan - + arctan -5 + arctan

4 2

This formula was supplied the calculating prodigy Zacharias Dahse [13] by
L. K. Schulz von Strassnitzky of Vienna. Within a period of two months in 1844,
Dahse thereby evaluated w correct to 200 places.

1 1IV. -4 = arctan + arctan -3
2

First published by Charles Hutton [14] in 1776, this relation was used by W. Leh-
mann [15] of Potsdam to compute w to 261 decimals in 1853. Tseng Chi-hung [16]
in 1877 used the same formula to evaluate 77 tO 100 decimals in a little more than
a month.

1
V. = 2 arctan 5 + arctan

The relation was also publiihed by Hutton [14] in 1776, and independently by
Euler in 1779. Vega [17] used it in 1789 to compute 143 decimals (126 cr-rect). In
order to remove the uncertainty caused by the discrepant appmximations of
Rutherford and Dahse, Thomas Clausen [18] extended the calculation to 248 cor-
rect decimah in 1847, and Lehmann [15] reached 261 decimals in 1853 by this
formula, confirming his independent calculation of 1. to the same extent by rela-
tion IV. Edgar Frisby [19] in Washington, D. C. used relation V in conjunction
with Euler's series to compute w to 30 places in 1872.

1 1 1
VI. == 3 arctan + arctan + arctan

1985

This formula was published by S. L. Loney [20] in 1893, by Carl Stormer [21]
in 1896, and was rediscovered by R. W. Morris [22] in 1944. By means of this
formula D. F. Ferguson, then of the Royal Naval College, Eaton, Chester, England,
performed a longhand calculation of w to 530 decimal places between May 1944
and May 1945. At that time he discovered a discrepancy between his approxima-
tkm and the final result of William Shanks-discussed under formula IX -begin-
ning with the 528th place. The first notice of an error in Shank's well-known
approximation appeared in a note [22] published by Ferguson in March 1946. He
continued his calculation of IT and in July 1946 published [23] a correction to
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Shank's value thmugh the 620th decimal place. Subsequently, Ferguson used a
desk calculator to reach 710 decimals [24] by January 1947, and finally 808 deci-
mals [25] by September 1947.

7T 1 1VII. 8 =tan arctan 4 arctan

S. Klingenstierna discovered this relation in 1730; it was rediscovered more
than a century later by Schellbach [26]. It was used by C. C. Camp [27] in 1926 to
evaluate 114 to 56 places. D. H. Lehmer [28] recomnunded it in conjunctionwith
the next formula for the calculation ofIr to many figures. G. E. Felton on March 31.
1957 completed a calculation of IT to 10021 places on a Pegasus computer at the
Ferranti Computer Centre in London. This required 33 hours of computer time.
The result was published to 10000 places [29]. A check calculation using formula
VIII revealed that, because of a machine ermr, this result was incorrect after 7480
decimal places.

Gauss [30] investigated the derivation of arctangent relations and reduced it
to a problem in Diophantine analysis. Relation VIII is one of several formulas he
developed. J. P. Ballantine [31] substantiated Lehrner's claim that this formula
is especially effective for extensive calculation, by discussing its use in conjunc-
tion with Euler's series for the arctangent., 1 1 1viiI. 12 aretan + 8 aretan -5-77 5 aretan4 18

Felton carried out a second calculation to 10021 places, and by March 1, 1958 had
removed all discrepancies from his results, so that the approximations computed
from formulas VII and VIII agreed to within 3 units in the 10021st decimal place.
The corrected result remains unpublished.

IT 1IX. -4 4 aretan I arctan
5 239

This is the most celebrated of all the relations of this kind. John Machin, its
discoverer. computed 77 correct to 100 decimals by means of it in conjunction with
Greamy's series, and the result [32] appeared in 1706. Clausen [18] in 1847 used
this relation in addition to Hutton's formula V to compute ir to 248 decimal places,
as has already been noted.

Rutherford resumed his calculation of w in 1852. using Machin's formula this
time, as did his former pupil William Shanks. Shanks's first published approxi-
mation to 7T contained 5atl decimal places, and was incorporated in Rutherford's
note [33], published in 1853, which set forth his approximation to 441 decimals.
Later that year Shanks published his book [34] containing an approximation to
607 places and giving all details of the calculation to 530 places. It is now known
that Shanks's value was incorrectly calculated beyond 527 decimal places. The
accuracy of that value was further vitiated by a blunder committed by Shanks in
correcting his copy prior to publication, with the result that similar errors appear
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in decimal places 460-462 and 513 515. These errors persist in Shanks's first
paper of 1873 [35] containing the extension to 707 decimals of his earlier approxi-
mation. His second paper of that year [36] which contained his final approximation
to tr, gives corrections of these errors; however, there appears an inadvertent
typographical error in the 326th decimal place of his final value. In retrospect, we
now realize that Shanks's first value published in 1853 was the most accurate he
ever published.

The accuracy of Shanks's approximation to at least 500 decimals was confirmed
by the independent calculations of Professor Richter [37] of Elbing, Germany,
who in 1853 1854 computed successive approximations to 330, 400, and 500
places. Richter's communications do nut reveal the formula that he used.

Machin's formula was used by H. S. Uhler in an unpublished computation cor-
rect to 282 places, which was completed in August 1900.

F. J. Duarte computed 1r correct to 200 places by this method in 1902. The re-
sult was published [38] six years later.

As a by-product of his calculation of the natural logarithms of small primes. Uhler
in 1940 noted [39] confirmation to 333 decimal places of Shanks's approximation.

In December 1945. Professor R. C. Archibald suggested that the writer under-
take the computation of ir by Machin's formula in order to provide an independent
check of the accuracy of Ferguson's calculations. With the collaboration of Levi
B. Smith, who evaluated arctan 11239 to 820 decimal places, the writer computed
/r to 818 places by February 1947, using a desk calculator. The result was published
[24] to 808 places in April 1947. and was verified to 710 places by Ferguson in
a note published concurrently [24]. The limit of 808 decimals in the published
value was chosen to provide precision comparable to that obtained by P. Pedersen
[40] in his approximation to e.

Collation .of this 808-place approximation with results obtained by. Ferguson
later that year revealed several erroneous figures beyond the 723rd place in the
writer's approximation to arrtan Vs. These errors vitiated the corresponding figures
in the approximation to Ir. Corrections of these errors and extensions of Ferguson's
results appeared in a joint paper [25] by Ferguson and the writer in January 1948,
which concluded with an 808-place approximation to IT of guaranteed accuracy.

Subsequently, Smith and the writer resumed their calculations and by June 1949
had obtained an approximation to about 1120 decimal places [41]. Before final
checking of this extension could be completed, the ENIAC (Electronic Numerical
Integrator and Computer) at the Ballistic Research Laboratories. Aberdeer Prov-
ing Ground, was employed by George W. Reitwk3ner and his associates in Sep-
tember 1949 to evaluate v to about 2037 places (2040 working decimals) in a total
time (including card handling) of 70 hours [42]. Machin's formula was also used
in this computation.

In November 1954. Smith and the writer extended their calculation to 1150
places, and in January 1956 reverted to this work once more to attain their final
result, which was terminated at 1160 places, of which the first 1157 agree with
those obtained on the ENIAC.
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A calculation of Tr was performed in duplicate on the NORC (Naval Ordnance
Research Calculator) in November 1954 and in January 1955 as a demonstration
problem, priur to the delivery of that computer to the U. S. Naval Proving Grounds
at Dahlgren, Virginia. Again, Machin's formula was selected, and the calculation
was completed to 3093 decimal places in 13 minutes running time. A report of this
work, in which the value of w was presented unrounded to 3089 decimal places,
was published by S. C. Nicholson and J. Jeenel [43] of the Watson Scientific Com-
puting Laboratory, in New York.

In January 1958, Francois Genuys [44] programmed and carried out the evalaa-
tion of n. correct to 10000 decimal places on an IBM 704 Electronic Data Process-
ing System a/ the Paris Data Processing System at the Paris Data Processing Cen-
ter. Machin's formula in conjunction with Gregory's series was used. Only 40
seconds were required to attain the 707 decimal-place precision reached by
Shanks, and one hour and forty minutes was required to reach the 10000 places
of the final result.

On July 20. 1959, the program of Genuys was used on an IBM 704 system at the
Commissariat a l'Energie Atomique in Paris to compute w to 16167 decimal places.
This latest approximation is unpublished at present.

TABLE 1

CUMULATIVE DISTRIBUTION OF nIE FIRST 16000 DECIMAL DIGITS OF 7r

THOUSAND
DIGIT

0 1 2 3 4 5 6 7 8 9
1 93 116 103 102 93 97 94 95 101 106
2 182 212 207 188 195 205 200 197 202 212
3 259 309 303 265 318 315 302 287 310 332
4 362 429 408 368 405 417 398 377 405 431
5 466 532 496 459 508 525 513 488 492 512
6 557 626 594 572 613 622 619 606 582 609
7 657 733 692 686 702 730 708 694 680 718
8 754 833 811 781 809 834 816 786 764 812
9 855 936 911 884 910 933 914 883 854 920

10 968 1026 1021 974 1012 1046 1021 970 948 1014
11 1070 1099 1111 1080 1133 1150 1129 1070 1031 1127
12 1162 1193 1214 1176 1233 1262 1227 1166 1144 1223
13 1266 1314 1316 1272 1343 1358 1324 1260 1246 1301
14 1365 1416 1419 1383 1440 1455 1426 1344 1339 1413
15 1456 1513 1511 1491 1553 1549 1520 1441 1458 1508
16 1556 1601 1593 1602 1670 1659 1615 1548 1546 1610

The motivation of modern calculations of ir to many decimal places was conjec-
tured by Professor P. S. Jones [45] in 1950 as being attributable to "intenectual
curiosity and the challenge of an unchecked and long untouched computation."
This reason for undertaking such work should be supplemented by reference to
the recurrent interest in determining a statistical measure of the randomness of
distribution of the digits in the decimal representation of
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Augustus De Morgan [46] drew attention to the deficiency in the number of
appearances of the digit 7 in Shanks's 607-place approximation to Ir. In 1897 E. B.
Escott [47] raised the question whether the deficiency of 7's noted in Shanks's
final approximation could be explained.

in June 1949, the late. Professor John von Neumann expressed an interest in
utilizing the ENIAC to determine the value of 1r and e to many places as the basis
for a statisiteal study of the distribution of their decimal digits. A statistical treat-
ment of the first 2000 decimal digits of both ir and e was published by N. C. Metro-
polis, G. Reitwiesner, and J. von Neumann [48]. Further analysis of these data was
performed by R. E. Greenwood [49], using the coupon collector's test. A count of
each of the decimal digits appearing in the NORC approximation appears in the
paper of Nicholson and Jeenel [43]. A number of recent investigators have dis-
cussed the distribution of digits in Shanks's approximation and in the corrected
value of 7r. These investigators include F. Bukovszky [50]. W. Hope-Jones [51],
E. -H. Neville [52], and B. C. Brookes [53].

The writer has recently completed a count by centuries of the 16167 decimal
digits constituting the fractional part of the latest approximation to V. An abridg-
ment of this information is presented in the accompanying table.

The standard e test for goodness of fit reveals no abnormal behavior in the dis-
tribution of digits in this sample; in particular, there appears to be no basis for
supposing that Ir is not simply normal [54] in the decimal scale of notation. It has
been pointed out recently by Ivan Niven [55] that the normality of such numbers
as zr. e, and VI has yet to be proved.

Numerical studies directed toward the empirical investigation of the normality
ir clearly require increasingly higher decimal approximations, which can best

be obtained by use of ultra-high-speed electronic computers now under design and
development.
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Did You Know That ir Has Been Calculated
to 100,265 Decimal Places?

Daniel Shanks and John W. Wrench, Jr., both of the David Taylor Model Basin
in Waahington, D.C., have calculated the values of w and e to 100,265D on an IBM
7090 system.' The computation of w was performed July 29. 1961 at the IBM
Datacenter in New York and required 8 hours 43 Minutes while the evaluation of
e required 2.5 hours.

Before going into the question of why such calculations are made, let's backtrack
a bit and see what has been done in the past.

The Bible is content with a value of 3 for the ratio of the circumference of a' circle
to its diameter but Archimedes was able to assign limits to w between 31/7 to 310/71.
The Egyptians had managed to evaluate, somehow, w as about 3.16 while the Baby-
lonians used the same value, 3, as the Bible.

It is remarkable that the Chinese Astronomer Tsu Ch'ung-Chih discovered a
simple fraction in the 5th Century that gives the value of ir accurate to six decimal
places:

355
3.1415929 .

113

From the middle of the 17th century many approximation expressions in the form
of infinite series of one kind or another were developed. Evaluations of r to aa many
decimal places as the patience of the computer could stand followed rapidly.

w was computed to 72D by Abraham Sharp in 1699; to 127D by Fautet de Lagny
in 1719; to 49D by the Japanese computer Matsunaga Ryohitsu using a power
series developed by Sir Isaac Newton; to 140D in 1794 by Baron Georg von Vega
(but only his first 136D were correct); to 40D by Chu Hung in 1800; to 152D by an
unknown computer at the close of the 18th century; to 208D by William Ruther-
ford in 1841, using one of Euler's arctangent relations; to 2611) (twice by different
methods) by W. Lehmann in 1853.*

The most celebrated calculation of tr was made to 7071) by William Shanks on
and off for the 20-year period from 1853 to 1873. It was not until 1945 that Shanks
was found, by D. F. Ferguson, to have erred at the 528th decimal place.

J. W. Wrench, Jr. and D. F. Ferguson calculated w to 808D in 1947 to match the
evaluation of e at that time.

*The reverence she-na w w calculators can be pined by considering that. in Germany, the value of or to 35 decimal
places is caLled the Lndolphisa number ix memory of Ludoph van Cauka German mathematician, Van Ceulen, in
1546, eakulated w to 350 and requested that this value be inscribed on his tombstone as an epitaph. He died at the
op of 70 and she tombstone vas dutifully laseribed as requested.
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AU the above calculations were done longhand (including Shanks 7079!) or with
a desk calculator. Subsequently, electronic computers were used and extended
sr evaluations followed: to 11209 in June 1949: to 20379 in September 1949 (taking
70 hours): to 30939 in November 1954 and January 1955 (taking only 13 minutes):
to 100009 (in 1 huur 40 minutes) in January 1958 by Francois Genuys on an IBM
704 Electronic Data Processing System in Paris; and, almost finally, to 161679 in
July 1959.

The latest calculation is that mentioned in the first paragraph.
Simon Newcomb, the astronomer and mathematician, once remarked about w

that ten decimal places would suffice to give the circumference of the earth ac-
curate to a fraction of an inch and that thirty decimal places would give the circum-
ference of the known universe to microscopic accuracy!

Why in the world is such apparently pointless work being dune?
One practical reason is that new computers can be checked by programming

problems with known answers.
The more interesting reason more interesting to recreational mathematicians.

anyway is to find out, by actual calculation, whether such numbers as w, e or
VT are "normal" numbers. That is, whether the digits 1. 2, 3, 4, 5, 6, 7, 8, 9, 0
-wur in a statistically random distributiondo they each occur approximately
10% of the time?

A count of the first 160009 of Tr reveals no abnormal distribution. w appears to
be a "normal" number.2 At present there is no proof of the normality of such num-
bers. It is not even known if the ten consecutive digits 1234567890 occur at least
once in the infinite decimal evaluation of V.

Shanks and Wrench estimate that computers will become available, in the next
5 to 7 years, which will be able to calculate ir to 1,000,000 decimal places. (The
IBM 7090 which performed the feat to 100,2659 in 8 hours 43 minutes would re-
quire month.s to do the calculation to 1,000,0009.)
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Epilogue

We have observed that in general. two methods of thinking have been employed
in computing the value of 7t: (I) the geometric approach, and (2) the analytical
approach. It should be noted that the man who used the first of these methods
thought of -71. as equivalent to a geometrical ratio, even as the Greek geometers
considered the ratio of two line segments when studying metric properties of
geometric figures. On the other hand, mathematicians using the second method
think of 77. not as the ratio of two lengths, but as the symbol for a specific number
(like the number e 2.718 . ) which enters many fields of mathematical analysis
from theoretical considerations rather than from any question of practical measure-
ment. In this connection, one of the most remarkable of mathematical relations is
that which associates ir and e. namely, el" + 1 0. The number e is itself a unique
constant, being the limit 'if the expansion (1 + 1/n )" as n Mcreases without limit.
We know that e is not Gnly an irrational number, but, like IT. it is also a transcen-
dental number, that is. a number which is not the root of a polynomial equation with
rational coefficients. The number i is the pure imaginary unit, where i2 = 1, or
i = V-7-17 That the product of i and 7r, applied to e as an exponent, should yield
the simple integer I. is indeed un amazing relation.
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